CONTACT Information sdivi@andrew.cmu.edu https://sathvikdivi.github.io/ 669.234.2974

RESEARCH INTERESTS

bio-inspired robotics, insect-scale robotics, microrobots, actuation and sensing, design and control of novel mechanisms, fabrication, systems integration

EDUCATION

Carnegie Mellon University

Pittsburgh, PA

Ph.D., Mechanical Engineering,

Aug 2022 (Expected)

Dissertation title: Role of latches in latch-mediated spring actuation systems for high-

 $acceleration\ movements\ in\ small\text{-}scale\ robots$

Advisor: Prof. Sarah Bergbreiter

NC State University

Raleigh, NC Dec 2017

M.S., Mechanical Engineering,

2011

Birla Institute of Technology & Science - Pilani,

June 2014

India

B.E.(Hons), Mechanical Engineering,

SKILLS

Programming Languages

MATLAB, Python, C, C++

Design/Analysis Tools

Simulink, Solidworks, Ansys APDL, Eagle

Rapid Prototyping Methods

3D Printing (FDM, SLA, DLP, PolyJet), Laser Cutting

RESEARCH EXPERIENCE

Research Assistant

Aug 2018 to Current

Microrobotics Lab, Carnegie Mellon University

Pittsburgh, PA

- Modeled the dynamics of latch-mediated spring actuation (LaMSA) systems to investigate the role of latches in high-acceleration movements in insects & robots
- Designed & fabricated small bio-inspired jumping robot prototypes, and validated the role of latches as a control tool for feedforward control in impulsive systems
- Designed & built a programmable virtual substrate using impedance control of a direct-drive actuator for mimicking a variety of environments to study the tuning relationship between LaMSA jumping robots and their environment
- Modeled & experimentally validated the tuning relationships between design & control aspects of LaMSA-based jumping robots and their environment

Research Assistant

Jan to July 2018

Microrobotics Lab, University of Maryland

College Park, MD

• Fabricated EPFL-inspired 7g LaMSA-based jumping robots with tunable latches to control jump performance

Research Assistant

Aug 2016 to June 2017

Engineering Mechanics & Space Systems Lab, NC State University Raleigh, NC

• Modeled the dynamics and control of a mobile underwater turbine system for harvesting marine hydrokinetic energy

JOURNAL PUBLICATIONS

- J1 **Divi, S.**, Reynaga, C.M., Azizi E., and Bergbreiter, S., "Adapting small jumping robots to compliant environments" [In Prep, Science Robotics]
- J2 **Divi, S.**, Foong, H.M., St. Pierre, R., and Bergbreiter, S., "Latch-based control of jump performance in small-scale jumping robots with fixed spring compression" [In **Prep**, Bioinspiration & Biomimetics]
- J3 Olberding, J.P., Hyun, N.P., De, A., Divi, S., Liang, X., Thomas, E., St. Pierre, R., Steinhardt, E., Jorge, J., Longo S.J., Cox, S., Mendoza, E., Sutton, G.P., Azizi, E., Crosby, A.J., Bergbreiter, S., Wood., R.J., and Patek, S.N., "Spring

- and latch dynamics act as control pathways in ultrafast systems" [Submitted to Science Advances]
- J4 Divi, S., Ma, X., Ilton, M., St. Pierre, R., Eslami, B., Patek, S.N., and Bergbreiter, S., "Latch-based control of energy output in spring actuated systems", *Journal of the Royal Society Interface* vol. 17, July 2020
- J5 Tandon, S., **Divi, S.**, Muglia, M., Vermillion, C., Mazzoleni, A., "Modeling and dynamics analysis of a mobile underwater turbine system for harvesting marine hydrokinetic energy", *Ocean Engineering* vol. 187, July 2019

CONFERENCE PRESENTATIONS AND PROCEEDINGS

- C1 Krishnan, T., **Divi, S.**, St. Pierre, R., Bergbreiter, S., and Ilton, M., "Performance trade-offs in a latch-mediated spring actuated robotic jumper", *Bulletin of the American Physical Society*, Chicago, IL, March 14-18 2022
- C2 Divi, S., Ma, X., Ilton, M., and Bergbreiter, S., "Tuning impulsive mechanisms to their environment", Bulletin of the American Physical Society, Boston, MA, March 4-8 2019
- C3 Ilton, M., Cook, A., Heller, N., Patek, S., Crosby, A., Bergbreiter, S., Azizi, E., Sutton, G., Longo, S., Divi, S., Reynaga, C., Olberding, J., St. Pierre, R., Cox, S., "Modeling the physical constraints of latch mediated, spring actuated systems", Bulletin of the American Physical Society, Boston, MA, March 4-8 2019

Workshop Talks

- W1 **Divi, S.** and Bergbreiter, S., "Power modulation of ultrafast movements through latches", *IEEE International Conference on Robotics and Automation (ICRA) Workshop on Energy Storage and Delivery in Robotic Systems*, Philadelphia, PA, May 27, 2022 [To be delivered]
- W2 Divi, S. and St. Pierre, R., "Practical approaches to studying latches" Society of Integrative and Comparative Biology Workshop on Playing with power: mechanisms of energy flow in organismal movement, Tampa, FL, January 3, 2019

TEACHING EXPERIENCE

Teaching Assistant

Aug to Dec 2019

24-452 - Mechanical Systems Experimentation Carnegie Mellon University

Teaching Assistant

Jan to May 2018

ENME350 - Electronics and Instrumentation I University of Maryland

Teaching Assistant

Aug 2016 to May 2017

MAE 405 - Dynamics and Control Laboratory NC State University

AWARDS

Milton Shaw Award for best poster (Robotics) at the 2019 Graduate Research Symposium (Dept of Mechanical Engineering, Carnegie Mellon University), March 2019

Finalist at CMU's $2022~3\mathrm{MT}$ competition

Leadership

Organizer - Symposium on Fast Movements: Nature, Robotics and Materials, Duke University, Durham, NC, July 19-21 2022

Organizer - Workshop on *Impulsive systems: Principles of rapid energy release and applications to unique robot behaviors*, at IEEE International Conference on Robotics and Automation, Philadelphia PA, May 23, 2022

Workshop leader - Society of Integrative and Comparative Biology Workshop on Playing with Power: mechanisms of energy flow in organismal movement, Tampa, FL, Jan 3, 2019

Vice president - Indian Graduate Student Association (MAITRI) at NC State University, Dec 2015-Dec 2016